Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1332882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405400

RESUMO

Background: Previous studies showed that vagus nerve stimulation (VNS) can improve cognitive function in patients with epilepsy, but there is still great controversy about the effect of VNS on cognitive function in patients with epilepsy. Objective: To investigate the effect of VNS on the cognitive function of epilepsy patients. Methods: Clinical trials published in PubMed, The Cochrane Library, and Embase before September 20, 2022, were comprehensively searched. Primary outcomes were overall cognitive performance, executive function, attention, memory; Secondary outcomes were seizure frequency, mood, and quality of life (QOL). Random effects were used to calculate the pooled outcome. Results: Twenty clinical trials were included. There was no significant improvement in overall cognitive performance in patients with epilepsy after VNS treatment (SMD = 0.07; 95% CI: -0.12 to 0.26; I2 = 0.00%) compared to pre-treatment. Compared to pre-treatment, there was no significant difference in executive function (SMD = -0.50; 95% CI: -1.50 to 0.50; p = 0.32), attention (SMD = -0.17; 95% CI: -0.43 to 0.09; p = 0.21) and memory (SMD = 0.64; 95% CI: -0.11 to 1.39; p = 0.09), but there were significant differences in seizure frequency, mood, and quality of life in patients with epilepsy after VNS. Conclusion: This meta-analysis did not establish that VNS can significantly improve cognitive function in patients with epilepsy, but it shows that VNS can significantly improve the seizure frequency, mood and quality of life of patients with epilepsy. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42023384059.

2.
Plant Physiol ; 181(2): 609-629, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395615

RESUMO

Because of climate change, crops will experience increasing heat stress. However, the ways in which heat stress affects crop growth and yield at the molecular level remain poorly understood. We generated spatiotemporal mRNA and small RNA transcriptome data, spanning seven tissues at three time points, to investigate the effects of heat stress on vegetative and reproductive development in maize (Zea mays). Among the small RNAs significantly induced by heat stress was a plastid-derived 19-nucleotide small RNA, which is possibly the residual footprint of a pentatricopeptide repeat protein. This suggests that heat stress induces the turnover of certain plastid transcripts. Consistently, genes responsible for photosynthesis in chloroplasts were repressed after heat stress. Analysis also revealed that the abundance of 24-nucletide small interfering RNAs from transposable elements was conspicuously reduced by heat stress in tassels and roots; nearby genes showed a similar expression trend. Finally, specific microRNA and passenger microRNA species were identified, which in other plant species have not before been reported as responsive to heat stress. This study generated an atlas of genome-wide transcriptomic responses to heat stress, revealing several key regulators as potential targets for thermotolerance improvement in maize.


Assuntos
Resposta ao Choque Térmico , Transcriptoma , Zea mays/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , MicroRNAs/metabolismo , Plastídeos/metabolismo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...